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Abstract

BINOL and substituted BINOLs, which have been tethered between the 7 and 7% sites (i.e. ‘cyclo-
BINOLs’), can be attached via this linkage to polystyrene resins using a simple acetalization. Efficacy
associated with these new ligands is demonstrated in heterogeneous asymmetric catalysis (e.g. aryl alkyl
sulfide oxidations, and 1,2-additions of Et2Zn to aryl aldehydes). © 2000 Elsevier Science Ltd. All rights
reserved.

Nonracemic BINOL, first recognized by Noyori1 as a ligand for metal-mediated homogeneous
asymmetric synthesis,2 has spawned an impressive array of applications and continues to serve
as the focal point of many new technologies. Issues associated with this nonracemic biaryl, such
as catalyst recovery and re-use, simplification of reaction workup, and product purification, have
fostered many efforts in search of heterogeneous equivalents.3–5 In this report, we describe the
first examples of 3-mono and 3,3%-unsymmetrically disubstituted BINOLs in their cyclo-BINOL
form, which are covalently bound to polystyrene resins.

Our modular route to substituted, nonracemic cyclo-BINOLs6 provided us with an entry to
BINOL arrays possessing oxygen functionality in the form of an acetonide at a distal site relative
to that of eventual metal complexation (1, Scheme 1). Removal of the diol protecting group (aq.
HCl, MeOH, rt) in 1 led to diol species 3 that was smoothly attached to formylated polystyrene
(PS) beads 2 (either 1 or 2% cross-linked polystyrene, prepared from the corresponding
chloromethylated material7 via oxidation with NaHCO3/DMSO; Scheme 2).8 Traditional Kagan
acetalization conditions (benzene or toluene, cat TsOH, reflux, Dean–Stark trap, 1 day)9 sufficed
to arrive at acetals 4. A series of polymer-supported cyclo-BINOLs has been prepared (Table 1),
which includes the parent system (4A), a 3-monosubstituted case (4B), 3,3%-symmetri-cally
disubstituted examples (4C, 4D), and two 3,3%-unsymmetrically disubstituted derivatives (4E, 4F).
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Scheme 1.

Scheme 2.

To test these novel ligands in their capacity as heterogeneous equivalents of known solution-
based BINOLs, two sequences were studied: (1) the oxidation of aryl sulfides to nonracemic
sulfoxides;10 and (2) the 1,2-addition of Et2Zn to aryl aldehydes.11 Pre-treatment of 4 (R, R%=H;
1% cross-linked polystyrene) with Ti(O-i-Pr)4 in THF at reflux for 1.5 h leads to orange beads
presumably composed of in situ generated complex 5 (R=i-Pr). Reaction of methyl p-tolyl
sulfide 6 with t-BuOOH in THF at 0°C for 60 h in the presence of catalyst 5 (25 mol%) afforded
(R)-sulfoxide 8 [67% yield; 78% ee; [a ]D25=112 (c=1.1, acetone); Scheme 3].10 Methyl phenyl
sulfide 7, under similar conditions (72 h, 50 mol% 5) gave sulfoxide 9 [65% yield; 88% ee;
[a ]D25=129 (c=2.1, acetone)].10 Both results compare favorably with literature methods involving
homogeneous conditions in THF.12 Isolation of what was anticipated to be ligand 4 (R, R%=H)
was actually material which had retained complexed titanium (i.e. catalyst 5 (R%%=i-Pr), or
possibly a derivative such as R%%=H). Re-exposure of the reclaimed Ti-complexed catalyst (from
each experiment) to sulfide 7 in two additional trials led to essentially the same results in terms
of chemical yields and ee’s (cf. Scheme 3).



9517

Table 1
Preparation of 1% cross-linked polystyrene-supported (R)-cyclo-BINOLs

Scheme 3.

Employing an identical modular strategy,6 2% cross-linked polystyrene-mounted 3,3%-symmet-
rically substituted (R)-cyclo-BINOL 10 was prepared, as was the corresponding homogeneous
catalyst 11.13 Results from a series of 1,2-additions of Et2Zn to aryl aldehydes 12 in toluene/hex-
ane at room temperature in the presence of 10 mol% 10 are summarized in Table 2.3a

Benzaldehyde afforded R product alcohol 13 in 89% yield with an ee of 96%. Resubmission of
this isolated ligand to fresh starting materials and reagents led to essentially the same results
over three additional cycles (entries 1a–d). Increasing the amount of catalyst 10 to 20 mol%
decreased the reaction time somewhat (8 h versus 12 h), but did not significantly impact the yield
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Table 2
1,2-Additions of Et2Zn to aldehydes catalyzed by 10

Entry Yield of 13 (%) % ee CommentsAr in 12

1 (a) 89 96a 1st use

92b 2nd use92(b)
90b 3rd use(c) 90
93b 4th use83(d)

(e) 93c94
90 95d2

84 98e3

564 84f

69 82c

a [a ]D
25=43.5 (c 5.2, CHCl3).17

b Results from recycled 10.
c Results from 10 mol% 11.
d [a ]D

25=31.8 (c 3.5, PhH).17

e [a ]D
25=25.1 (c 2.0, PhH).18

f [a ]D
25=−22.6 (c 6.9, PhH).19

or product alcohol ee (92% yield; 96% ee). As a control experiment, non-polymer-bound
cyclo-BINOL 11 reacted faster (3.5 h), but with an otherwise similar outcome (94% yield; 93%
ee; entry 1e). Other aryl aldehydes likewise led to aryl carbinols of good ee’s. The one case
examined of an alkyl aldehyde, under either hetero- or homogeneous conditions, was not as high
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yielding nor as responsive in terms of observed ee (entry 4), to be expected based on literature
precedent for polystyrene-supported catalysts.3b Thus, other than affecting to a minor degree
the rate of 1,2-addition, the overall effectiveness of this ligand under heterogeneous conditions
at delivering the ethyl group in a highly stereocontrolled fashion is comparable to that seen
under homogeneous conditions. These results are also competitive with the corresponding
polybinaphthyls extensively developed by Pu,3 with the exception of attempts to apply our
heterogeneous conditions to 1,2-additions of Ph2Zn which did not afford synthetically useful
levels of induction (20–40% ee’s).4,5

Lastly, the potential for unsymmetrical polystyrene-bound cyclo-BINOLs to enhance the
level of stereoinduction relative to the parent BINOL was demonstrated in comparison
reactions of related Et2Zn additions to aryl aldehydes in the presence of Ti(O-i-Pr)4 (Table 3).5

Under homogeneous conditions, Ti-precomplexed (S)-BINOL catalyzes the 1,2-addition of
Et2Zn to benzaldehyde to afford the S alcohol (S)-14 with 92% ee. The corresponding
polymer-supported (R)-cyclo-BINOL (4A) gives an identical level of enantiomeric excess in
product (R)-14. With para-anisaldehyde, both (S)-BINOL and PS-(R)-cyclo-BINOL gave
inferior results (<79% ee’s). However, the 3-phenyl-substituted PS-cyclo-BINOL 4B led to the
desired products (R)-14 not only in high isolated yields (>92%), but most notably, with >95%
ee for both aldehydes.

Table 3
Catalysis by an unsymmetrical, heterogeneous, 3-substituted (R)-cyclo-BINOL (4B)
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In summary, a modular approach has been utilized to arrive at variously substituted
polystyrene-bound cyclo-BINOLs via attachment of precursor ligands to formylated commercial
samples of (1 and 2% cross-linked) polystyrene beads. Efficacy has been demonstrated for
conversions of sulfides to nonracemic sulfoxides, as well as in 1,2-additions of Et2Zn to aryl
aldehydes. The ligands are easily handled, are reusable without significant loss of efficiency, and
provide for very simple workup procedures which minimize losses of material.14 With these
results in hand, we can now focus on the corresponding polymer-supported (substituted)
cyclo-NOBIN15 and cyclo-BINAP16 systems, reports on which will be submitted in due course.
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